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ABSTRACT

We propose a Bayesian expectation-maximization (EM) algorithm for reconstructing struc-

tured approximately sparse signals via belief propagation. The measurements follow an un-

derdetermined linear model where the regression-coefficient vector is the sum of an unknown

approximately sparse signal and a zero-mean white Gaussian noise with an unknown variance.

The signal is composed of large- and small-magnitude components identified by binary state

variables whose probabilistic dependence structure is described by a hidden Markov tree. Gaus-

sian priors are assigned to the signal coefficients given their state variables and the Jeffreys’

noninformative prior is assigned to the noise variance. Our signal reconstruction scheme is

based on an EM iteration that aims at maximizing the posterior distribution of the signal and

its state variables given the noise variance. We employ a max-product algorithm to implement

the maximization (M) step of our EM iteration. The proposed EM algorithm estimates the

vector of state variables as well as solves iteratively a linear system of equations to obtain the

corresponding signal estimate. We select the noise variance so that the corresponding estimated

signal and state variables (obtained upon convergence of the EM iteration) have the largest

marginal posterior distribution. Our numerical examples show that the proposed algorithm

achieves better reconstruction performance compared with the state-of-the-art methods.
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CHAPTER 1. INTRODUCTION

The advent of compressive sampling (compressed sensing) in the past few years has sparked

research activity in sparse signal reconstruction, whose main goal is to estimate the sparsest

p× 1 signal coefficient vector s from the N × 1 measurement vector y satisfying the following

underdetermined system of linear equations: y = H s, where H is an N × p sensing matrix

and N ≤ p.

A tree dependency structure is exhibited by the wavelet coefficients of many natural im-

ages [1–6], see also Fig. 2.1(a) and [3, Fig. 2]. A probabilistic Markov tree structure has been

employed to model the statistical dependency between the state variables of wavelet coeffi-

cients [1]. An approximate belief propagation algorithm has been first applied to compressive

sampling in [7], which employs sparse Rademacher sensing matrices for Bayesian signal recon-

struction. Donoho et al. [8] simplified the sum-product algorithm by approximating messages

with using a Gaussian distribution specified by two scalar parameters, leading to their ap-

proximate message passing (AMP) algorithm. Following the AMP framework, [9] proposed a

turbo-AMP structured sparse signal recovery method based on loopy belief propagation and

turbo equalization and applied it to reconstruct one-dimensional signals; [6] applied the turbo-

AMP approach to reconstruct compressible images. However, the above references do not

employ the exact form of the messages and also have the following limitations: Baron et al. [7]

rely on sparsity of the sensing matrix, the methods by Baron et al. [7] and Donoho et al. [8]

apply to unstructured signals only, and the turbo-AMP approach in [6] and [9] needs columns

of the sensing matrix to be normalized, see [6, eq. (22)] and [9, Sec. IV.A].

In this paper, we combine the hierarchical measurement model in [10] with a Markov tree

prior on the binary state variables that identify the large- and small-magnitude signal coeffi-

cients and develop a Bayesian maximum a posteriori (MAP) expectation-maximization (EM)
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signal reconstruction scheme that aims at maximizing the posterior distribution of the signal

and its state variables given the noise variance, where the maximization (M) step employs a

max-product belief propagation algorithm. Unlike the previous work, we do not approximate

the message form in our belief propagation scheme. Unlike the turbo-AMP scheme in [6] and [9],

our reconstruction scheme does not require the columns of the sensing matrix to be normalized.

Since there are no loops in the graphical model behind our M-step objective function, the M

step of our EM algorithm is exact. In [11], we proposed a similar EM algorithm for a random

signal model [12] with a purely sparse deterministic signal component and a noninformative

prior on this component given the binary state variables. We apply a grid search to select

the noise variance so that the estimated signal and state variables have the largest marginal

posterior distribution.

In Chapter 2, we introduce our measurement and prior models. Chapter 3 describes the

proposed EM algorithm and establishes its properties, where the implementation of the M

step via the max-product algorithm is presented in Section 3.1. The selection of the noise

variance parameter is discussed in Chapter 4. Numerical simulations in Chapter 5 compare

reconstruction performances of the proposed and existing methods.

We introduce the notation: In and 0n×1 denote the identity matrix of size n and the

n× 1 vector of zeros, respectively; “T ” and ∥ · ∥p are the transpose and ℓp norm, respectively;

N (x;µ,Σ ) denotes the probability density function (pdf) of a multivariate Gaussian random

vector x with mean µ and covariance matrix Σ ; Inv-χ2(σ2; ν, σ20) denotes the pdf of a scaled

inverse chi-square distribution with ν degrees of freedom and a scale parameter σ20, see [13, p. 50

and App. A]; |T | is the cardinality of the set T ; υ(·) is an invertible operator that transforms the

two-dimensional matrix element indices into one-dimensional vector element indices. Finally,

ρH denotes the largest singular value of a matrix H, also known as the spectral norm of H,

and “⊙” denotes the Hadamard (elementwise) product.
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CHAPTER 2. Measurement and Prior Models

We model an N × 1 real-valued measurement vector y using the standard additive white

Gaussian noise measurement model with the likelihood function given by the following pdf [3,6]:

py | s,σ2(y | s, σ2) = N (y ; H s, σ2 Ip) (2.1)

where H is an N × p real-valued sensing matrix with rank(H) = N satisfying (without loss of

generality)

ρH = 1 (2.2)

s = [s1, s2, . . . , sp]
T is an unknown p × 1 real-valued signal coefficient vector, and σ2 is the

unknown noise variance.

We adopt the Jeffreys’ noninformative prior for the variance component σ2:

pσ2(σ2) ∝ (σ2)−1. (2.3)

Define the vector of binary state variables q = [q1, q2, . . . , qp]
T ∈ {0, 1}p that determine if

the magnitudes of the signal components si, i = 1, 2, . . . , p are small (qi = 0) or large (qi = 1).

Assume that si are conditionally independent given qi and assign the following prior pdf to the

signal coefficients:

ps | q, σ2(s | q, σ2) =
p∏

i=1

[N (si ; 0, γ
2 σ2)]qi [N (si ; 0, ϵ

2 σ2)]1−qi (2.4a)

where γ2 and ϵ2 are known positive constants and, typically, γ2 ≫ ϵ2. Hence, the large- and

small-magnitude signal coefficients si corresponding to qi = 1 and qi = 0 are modeled as zero-

mean Gaussian random variables with variances γ2 σ2 and ϵ2 σ2, respectively. Consequently,

γ2 and ϵ2 are relative variances (to the noise variance σ2) of the large- and small-magnitude

signal coefficients. Equivalently,

ps | q, σ2(s | q, σ2) = N (s ; 0p×1, σ
2D(q)) (2.4b)
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(a)

A

Troot

Tleaf

(b)

Figure 2.1 (a) Clustering of significant discrete wavelet transform coefficients of a compressed

‘Cameraman’ image and (b) types of wavelet decomposition coefficients: approxi-

mation, root, and leaf, whose sets are denoted by A, Troot, and Tleaf , respectively.

where

D(q) = diag{(γ2)q1 (ϵ2)1−q1 , (γ2)q2 (ϵ2)1−q2 , . . . , (γ2)qp (ϵ2)1−qp}. (2.4c)

We now introduce the Markov tree prior probability mass function (pmf) on the state

variables qi [1, 2, 6]. To make this probability model easier to understand, we introduce two-

dimensional signal element indices (i1, i2). Recall that the conversion operator υ(·) is invert-

ible; hence, there is a one-to-one correspondence between the corresponding one- and two-

dimensional signal element indices. A parent wavelet coefficient with a two-dimensional position

index (i1, i2) has four children in the finer wavelet decomposition level with two-dimensional

indices (2 i1 − 1, 2 i2 − 1), (2 i1 − 1, 2 i2), (2 i1, 2 i2 − 1) and (2 i1, 2 i2), see Fig. 2.1(b). The

parent-child dependency assumption implies that, if a parent coefficient in a certain wavelet

decomposition level has small (large) magnitude, then its children coefficients in the next finer

wavelet decomposition level tend to have small (large) magnitude as well. Denote by ρ and c

the numbers of rows and columns of the image, and by L the number of wavelet decomposition

levels (tree depth).

We set the prior pmf pq(q) as follows. In the first wavelet decomposition level (l = 1),
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assign

pqi(1) = Pr{qi = 1} =

 1, i ∈ A

Proot, i ∈ Troot
(2.5a)

where

A = υ
(
{1, 2, . . . , ρ

2L
} × {1, 2, . . . , c

2L
}
)

(2.5b)

Troot = υ
(
{1, 2, . . . , ρ

2L−1
} × {1, 2, . . . , c

2L−1
}
)
\A (2.5c)

are the sets of indices of the approximation and root node coefficients and Proot ∈ (0, 1) is

a known constant denoting the prior probability that a root node signal coefficient has large

magnitude, see Fig. 2.1(b). In the levels l = 2, 3, . . . , L, assign

pqi | qπ(i)
(1 | qπ(i)) =

 PH, qπ(i) = 1

PL, qπ(i) = 0
(2.5d)

where π(i) denotes the index of the parent of node i. Here, PH ∈ (0, 1) and PL ∈ (0, 1) are known

constants denoting the probabilities that the signal coefficient si is large if the corresponding

parent signal coefficient is large or small, respectively.

Our wavelet tree structure consists of |Troot| trees and spans all signal wavelet coefficients

except the approximation coefficients; hence, the set of indices of the wavelet coefficients within

the trees is

T = υ
(
{1, 2, . . . , ρ} × {1, 2, . . . , c}

)
\A (2.5e)

Define also the set of leaf variable node indices within the tree structure as

Tleaf = υ
(
[{1, 2, . . . , ρ} × {1, 2, . . . , c}] \ [{1, 2, . . . , ρ

2
} × {1, 2, . . . , c

2
}]
)

(2.5f)

see Fig. 2.1(b). More complex models are possible; see e.g., [4] and [6], which, however, need

at least 10 hyperparameters to specify the prior for the same wavelet tree and did not report

large-scale examples. Here, we only need 5 tuning parameters Proot, PH, PL, γ
2, and ϵ2, each

with a clear meaning. A fairly crude choice of these parameters is sufficient for achieving good

reconstruction performance, see Chapter 5.



www.manaraa.com

6

The logarithm of the prior pmf pq(q) is

ln pq(q) = const +
[∑
i∈A

ln1(qi = 1)
]
+
[ ∑
i∈Troot

qi lnProot + (1− qi) ln(1− Proot)
]

+
[ ∑
i∈T \Troot

qi qπ(i) lnPH + (1− qi) qπ(i) ln(1− PH)

+qi (1− qπ(i)) lnPL + (1− qi) (1− qπ(i)) ln(1− PL)
]

(2.5g)

where const denotes the terms that are not functions of q.

2.1 Bayesian Inference

Define the vectors of state variables and signal coefficients

θ =

[
θT
1 θT

2 · · · θT
p

]T
, θi =

[
qi, si

]T
. (2.6)

The joint posterior distribution of θ and σ2 is

pθ, σ2 |y(θ, σ
2 |y) ∝ py | s,σ2(y | s, σ2) ps | q, σ2(s | q, σ2) pq(q) pσ2(σ2)

∝ (σ2)−(p+N+2)/2 exp[−0.5 ∥y −H s∥22/σ2 − 0.5 sT D−1(q) s/σ2]
( ϵ2
γ2

)0.5 ∑p
i=1 qi

pq(q)(2.7)

which implies

pσ2 |θ,y(σ
2 |θ, y) = Inv-χ2

(
σ2
∣∣∣ p+N,

∥y −H s∥22 + sT D−1(q) s

p+N

)
(2.8a)

pθ |y(θ |y) =
pθ, σ2 |y(θ, σ

2 |y)
pσ2 | θ,y(σ

2 |θ, y)

∝ pq(q)
( ϵ2
γ2

)0.5 ∑p
i=1 qi

/[∥y −H s∥22 + sT D−1(q) s

p+N

](p+N)/2
(2.8b)

and

pθ |σ2,y(θ |σ2,y) ∝ exp
[
− 0.5

∥y −Hs∥22 + sT D−1(q)s

σ2

] ( ϵ2
γ2

)0.5∑p
i=1 qi

pq(q). (2.8c)

For a fixed q, (2.8b) is maximized with respect to s at

ŝ(q) = D(q)HT [IN +HD(q)HT ]−1 y. (2.9)

which is the Bayesian linear-model minimum mean-square error (MMSE) estimator of s for

a given q [14, Theorem 11.1]. As ϵ2 decreases to zero, ŝ(q) becomes more sparse (becoming

exactly sparse for ϵ2 = 0); as ϵ2 increases, ŝ(q) becomes less sparse.
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Substituting (2.9) into (2.8b) yields the following concentrated (profile) marginal posterior :

max
s

pθ |y(θ |y) ∝ pq(q)
( ϵ2
γ2

)0.5 ∑p
i=1 qi

/{yT [IN +HD(q)HT ]−1 y

p+N

}(p+N)/2
(2.10)

which is a function of the state variables q only.

We wish to maximize (2.8b) with respect to θ, but cannot perform this task directly.

Consequently, we adopt the following indirect approach: We first develop an EM algorithm

for maximizing pθ |σ2,y(θ |σ2,y) in (2.8c) for a given σ2 (Chapter 3) and then propose a grid

search scheme for selecting the best regularization parameter σ2 so that the estimated signal

and state variables have the largest marginal posterior distribution (2.8b) (Chapter 4).
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CHAPTER 3. An EM Algorithm for Maximizing pθ |σ2,y(θ |σ2,y)

Motivated by [10, Sec. V.A], we introduce the following hierarchical two-stage model:

py |z,σ2(y |z, σ2) = N
(
y ; H z, σ2 (IN −HHT )

)
(3.1a)

pz | s(z | s) = N (z ; s, σ2 Ip) (3.1b)

where z is a p × 1 vector of missing data. Observe that the assumption (2.2) guarantees that

the covariance matrix σ2 (IN −HHT ) in (3.1a) is positive semidefinite.

Our EM algorithm for maximizing pθ |σ2,y(θ |σ2,y) in (2.8c) consists of iterating between

the following expectation (E) and maximization (M) steps (see Appendix A):

E step: z(j) = [z
(j)
1 , z

(j)
2 , . . . , z(j)p ]T = s(j) +HT (y −H s(j)) (3.2)

M step: θ(j+1) = argmax
θ

{
− 0.5

∥z(j) − s∥22 + sTD−1(q)s

σ2
+ ln[pq(q)] + 0.5 ln

( ϵ2
γ2

) p∑
i=1

qi

}
(3.3a)

= argmax
θ

ln pθ |σ2,z(θ |σ2, z(j)) (3.3b)

where j denotes the iteration index. To simplify the notation, we omit the dependence of the

iterates θ(j) on σ2 in this chapter. Denote by θ(+∞), s(+∞), and q(+∞) the estimates of θ, s,

and q obtained upon convergence of the above EM iteration.

For any two consecutive iterations j and j+1, our EM algorithm ensures that the objective

posterior function does not decrease, i.e.

pθ |σ2,y(θ
(j+1) |σ2,y) ≥ pθ |σ2,y(θ

(j) |σ2,y) (3.4)

see Appendix A. Monotonic convergence is also a key general property of the EM-type algo-

rithms [15].
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Theorem 1. The above EM iteration provides an estimate q(+∞) of the vector of state variables

q as well as finds the solution (2.9) of the underlying linear system to obtain the corresponding

signal estimate:

s(+∞) = ŝ(q(+∞)). (3.5)

Proof. See Appendix A.

Consequently, as ϵ2 decreases to zero, s(+∞) becomes more sparse; as ϵ2 increases, s(+∞)

becomes less sparse.

Note that the M step in (3.3b) is equivalent to maximizing pθ |σ2,z(θ |σ2, z) for the miss-

ing data vector z = z(j). In the following section, we describe efficient maximization of

pθ |σ2,z(θ |σ2, z).

3.1 M Step: Maximizing pθ |σ2,z(θ |σ2, z)

Before we proceed, define

ŝi(0) =
ϵ2

1 + ϵ2
zi, ŝi(1) =

γ2

1 + γ2
zi (3.6)

where we omit the dependence of ŝi(0) and ŝi(1) on zi to simplify the notation.

Observe that

pθ |σ2,z(θ |σ2, z) ∝ pθA |σ2,z(θA |σ2, z) pθT |σ2,z(θT |σ2, z) (3.7)

where θA and θT consist of θi, i ∈ A and θi, i ∈ T , respectively, and

pθA |σ2,z(θA |σ2, z) ∝
{∏

i∈A
N (zi ; si, σ

2)N (si ; 0, γ
2 σ2)1(qi = 1)

}
(3.8a)

pθT |σ2,z(θT |σ2, z) ∝
{∏

i∈T
N (zi; si, σ

2) [N (si; 0, γ
2 σ2)]qi [N (si; 0, ϵ

2 σ2)]1−qi
}
pqT (qT ). (3.8b)

Here, (3.8a) follows from (2.5a) and (3.8b) corresponds to the hidden Markov tree (HMT)

probabilistic model that contains no loops. Fig. 3.1 depicts an HMT that is a part of the

probabilistic model (3.8b). Maximizing pθA |σ2,z(θA |σ2,z(j)) in (3.8a) with respect to θi, i ∈ A

yields

θ̂i =

[
1, ŝi(1)

]T
, i ∈ A (3.9)
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z

Figure 3.1 A hidden Markov tree, part of the probabilistic model (3.8b).

where we have used the identity (B1a) in Appendix B.

We now apply the max-product belief propagation algorithm [16–18] to each tree in our

wavelet tree structure, with the goal to find the mode of pθT |σ2,z(θT |σ2, z). We represent the

HMT probabilistic model for pθT |σ2,z(θT |σ2, z) via potential functions as [see (3.8b)]

pθT |σ2,z(θT |σ2, z) ∝
[ ∏
i∈T \Troot

ψi(θi)ψi,π(i)(qi, qπ(i))
] [ ∏

i∈Troot

ψi(θi)
]

(3.10)

where if i ∈ T \Troot,

ψi(θi) = N (zi ; si, σ
2) [N (si ; 0, γ

2 σ2)]qi [N (si ; 0, ϵ
2 σ2)]1−qi (3.11a)

and if i ∈ Troot,

ψi(θi) = N (zi ; si, σ
2) [ProotN (si ; 0, γ

2 σ2)]qi [(1− Proot)N (si ; 0, ϵ
2 σ2)]1−qi (3.11b)

and, for i ∈ T \Troot,

ψi,π(i)(qi, qπ(i)) = [PH
qi (1− PH)

1−qi ]qπ(i) [PL
qi (1− PL)

1−qi ]1−qπ(i) . (3.11c)

Our algorithm for maximizing (3.10) consists of computing and passing upward and down-

ward messages and calculating and maximizing beliefs.
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Figure 3.2 Computing and passing (a) upward and (b) downward messages.

3.1.1 Computing and Passing Upward Messages

We propagate the upward messages from the lowest decomposition level (i.e., the leaves)

towards the root of the tree. Fig. 3.2(a) depicts the computation of the upward message from

variable node θi to its parent node θπ(i) wherein we also define a child of θi as a variable node

θk with index k ∈ ch(i), where ch(i) is the index set of the children of i: for i = υ(i1, i2),

ch(i) = {υ
(
(2 i1 − 1, 2 i2 − 1), (2 i1 − 1, 2 i2), (2 i1, 2 i2 − 1), (2 i1, 2 i2)

)
}. Here, we use a circle

and an edge with an arrow to denote a variable node and a message, respectively. The upward

messages have the following general form [17]:

mi→π(i)(qπ(i)) = αmax
θi

{
ψi(θi)ψi,π(i)(qi, qπ(i))

∏
k∈ch(i)

mk→i(qi)
}

(3.12)

where α > 0 denotes a normalizing constant used for computational stability [17]. For nodes

that have no children (corresponding to the level L, i.e., i ∈ Tleaf), we set the multiplicative

term
∏

k∈ch(i)mk→i(θi) in (3.12) to one.

In Appendix B.1, we show that the only two candidates for θi in the maximization of (3.12)

are [0, ŝi(0)]
T and [1, ŝi(1)]

T , see (3.6).

Substituting these candidates into (3.12) and normalizing the messages yields (see Ap-
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pendix B.1)

mi→π(i)(qπ(i)) = [µui (0)]
1−qπ(i) [µui (1)]

qπ(i) (3.13a)

where [µui (0), µ
u
i (1)]

T = µu
i ,

µu
i =

[max{νu
0,i ⊙ ηu

i }, max{νu
1,i ⊙ ηu

i }]T

max{νu
0,i ⊙ ηu

i }+max{νu
1,i ⊙ ηu

i }

=

[
exp(lnmax{νu

0,i ⊙ ηu
i } − lnmax{νu

1,i ⊙ ηu
i }), 1

]T
1 + exp(lnmax{νu

0,i ⊙ ηu
i } − lnmax{νu

1,i ⊙ ηu
i })

(3.13b)

νu
0,i =

[
1− PL, PL

]T
⊙ ϕ(zi) (3.13c)

νu
1,i =

[
1− PH, PH

]T
⊙ ϕ(zi) (3.13d)

ηu
i =

{ ⊙
k∈ch(i) µ

u
k, i ∈ T \Tleaf[

1, 1

]T
, i ∈ Tleaf

(3.13e)

ϕ(z) =

[
exp(−0.5 z2

σ2+σ2ϵ2
)/ϵ, exp(−0.5 z2

σ2+σ2γ2 )/γ

]T
(3.13f)

and ϵ =
√
ϵ2 > 0 and γ =

√
γ2 > 0. A numerically stable implementation of (3.13b) that we

employ is illustrated in the second expression in (3.13b). Similarly, the elementwise products

in (3.13c)–(3.13e) are implemented as exponentiated sums of logarithms of the product terms.

3.1.2 Computing and Passing Downward Messages

Upon obtaining all the upward messages, we now compute the downward messages and

propagate them from the root towards the lowest level (i.e., the leaves). Fig. 3.2(b) depicts

the computation of the downward message from the parent θπ(i) to the variable node θi, which

involves upward messages to θπ(i) from its other children, i.e. the siblings of θi, marked as

θk, k ∈ sib(i). This downward message also requires the message sent to θπ(i) from its parent

node, which is the grandparent of θi, denoted by θgp(i). The downward messages have the

following general form [17]:

mπ(i)→i(qi) = αmax
θπ(i)

{
ψπ(i)(θπ(i))ψi,π(i)(qi, qπ(i))mgp(i)→π(i)(qπ(i))

∏
k∈sib(i)

mk→π(i)(qπ(i))
}
(3.14)
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where α > 0 denotes a normalizing constant used for computational stability. For the variable

nodes i in the second decomposition level that have no grandparents (i.e., π(i) ∈ Troot), we set

the multiplicative term mgp(i)→π(i)(qπ(i)) in (3.14) to one.

In Appendix B.2, we show that the only two candidates for θπ(i) in the maximization of

(3.14) are [0, ŝπ(i)(0)]
T and [1, ŝπ(i)(1)]

T , see also (3.6). Substituting these candidates into (3.14)

and normalizing the messages yields (see Appendix B.2)

mπ(i)→i(qi) = [µdi (0)]
1−qi [µdi (1)]

qi (3.15a)

for π(i) ∈ T \Tleaf , where [µdi (0), µ
d
i (1)]

T = µd
i and

µd
i =

[max{νd
0,i ⊙ ηd

i }, max{νd
1,i ⊙ ηd

i }]T

max{νd
0,i ⊙ ηd

i }+max{νd
1,i ⊙ ηd

i }

=

[
exp(lnmax{νd

0,i ⊙ ηd
i } − lnmax{νd

1,i ⊙ ηd
i }), 1

]T
1 + exp(lnmax{νd

0,i ⊙ ηd
i } − lnmax{νd

1,i ⊙ ηd
i })

(3.15b)

νd
0,i =

[
1− PL, 1− PH

]T
⊙ ϕ(zπ(i))⊙

[ ⊙
k∈sib(i)

µu
k

]
(3.15c)

νd
1,i =

[
PL, PH

]T
⊙ ϕ(zπ(i))⊙

[ ⊙
k∈sib(i)

µu
k

]
(3.15d)

ηd
i =


[
1− Proot, Proot

]T
, π(i) ∈ Troot

µd
π(i), π(i) ∈ (T \Troot)\Tleaf

. (3.15e)

A numerically stable implementation of (3.15b) that we employ is illustrated in the second

expression in (3.15b).

The above upward and downward messages have discrete representations, which is practi-

cally important and is a consequence of the fact that we use a Gaussian prior on the signal

coefficients, see (2.4). Indeed, in contrast with the existing message passing algorithms for

compressive sampling [6–9], our max-product scheme employs exact messages.
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3.1.3 Maximizing Beliefs

Upon computing and passing all the upward and downward messages, we maximize the

beliefs, which have the following general form [17]:

b(θi) = αψi(θi)mπ(i)→i(qi)
∏

k∈ch(i)

mk→i(qi) (3.16)

for each i ∈ T , where α > 0 is a normalizing constant. [In (3.16), we set mπ(i)→i(qi) = 1 if

i ∈ Troot and
∏

k∈ch(i)mk→i(qi) = 1 if i ∈ Tleaf .] We then use these beliefs to obtain the mode

θ̂T = argmax
θT

pθT |σ2,z(θT |σ2, z) (3.17)

where the elements of θ̂T are [see (3.6)]

θ̂i =

[
q̂i, ŝi(q̂i)

]T
= argmax

θi

b(θi) =


[
1, ŝi(1)

]T
, βi(1) ≥ βi(0)[

0, ŝi(0)

]T
, otherwise

, i ∈ T (3.18a)

and

βi =

[
βi(0), βi(1)

]T
=


[
1− Proot, Proot

]T
⊙ ϕ(zi)⊙ ηu

i , i ∈ Troot

ϕ(zi)⊙ µd
i ⊙ ηu

i , i ∈ T \ Troot
. (3.18b)

The detailed derivation for the forms of θ̂i and βi in (3.18) is provided in Appendix B.3.
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CHAPTER 4. Selecting σ2

We can integrate σ2 out, yielding the marginal posterior of θ in (2.8b), and derive an ‘outer’

EM iteration for maximizing pθ |y(θ |y):

(i) Fix σ2 and apply the EM iteration proposed in Chapter 3 to obtain an estimate θ(+∞)(σ2)

of θ;

(ii) Fix θ to the value obtained in (i) and estimate σ2 as

σ̂2(θ) =
∥y −H s∥22 + sT D−1(q) s

p+N
. (4.1)

Even though it guarantees monotonic increase of the marginal posterior pθ |y(θ |y), the ‘outer’

EM iteration (i)–(ii) does not work well in practice because it gets stuck in an undesirable local

maximum of pθ |y(θ |y). To find a better (generally local) maximum of pθ |y(θ |y), we apply

a grid search over σ2 as follows.

We apply the EM algorithm in Chapter 3 using a range of values of the regularization

parameter σ2. We traverse the grid of K values of σ2 sequentially and use the signal estimate

from the previous grid point to initialize the signal estimation at the current grid point: in

particular, we move from a larger σ2 (say σ2old) to the next smaller σ2new(< σ2old) and use

s(+∞)(σ2old) (obtained upon convergence of the EM iteration in Chapter 3 for σ2 = σ2old) to

initialize the EM iteration at σ2new. The largest σ2 on the grid and the initial signal estimate

at this grid point are selected as

σ2MAX =
∥y∥22
p+N

, θ(0)(σ2MAX) = 02p×1. (4.2a)

The consecutive grid points σ2new and σ2old satisfy

σ2new =
σ2old
d

(4.2b)
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Figure 4.1 Grid search in selecting σ2.

where d > 1 is a constant determining the search resolution. Finally, we select the σ2 from the

above grid of candidates that yields the largest marginal posterior distribution (2.8b):

σ2⋆ = arg max
σ2∈{σ2

MAX,σ2
MAX/d,...,σ2

MAX/dK−1}
pθ |y(θ

(+∞)(σ2) |y) (4.3)

and the final estimates of θ and s as θ(+∞)(σ2⋆) and s(+∞)(σ2⋆), respectively, see Fig. 4.1.
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CHAPTER 5. Numerical Examples

We compare the reconstruction performances of the following methods:

• our proposed max-product EM algorithm in Chapter 3 with the variance parameter σ2

selected using the marginal-posterior based criterion in Chapter 4 (labeled MP-EM),

search resolution d = 2, and MATLAB implementations available at http://home.eng.

iastate.edu/~ald/MPEM.html;

• our max-product EM algorithm in Chapter 3 with σ2 tuned manually for good perfor-

mance (labeled MP-EMOPT) with d = 2;

• the turbo-AMP approach [6] with a MATLAB implementation at http://www.ece.osu.

edu/~schniter/turboAMPimaging and the tuning parameters chosen as the default val-

ues in this implementation;

• the fixed-point continuation active set algorithm [19] (labeled FPCAS) that aims at min-

imizing the Lagrangian cost function

0.5 ∥y −H s∥22 + τ ∥s∥1 (5.1a)

with the regularization parameter τ computed as

τ = 10a ∥HT y∥∞ (5.1b)

where a is a tuning parameter chosen manually to achieve good reconstruction perfor-

mance;

• the Barzilai-Borwein version of the gradient-projection for sparse reconstruction method

with debiasing in [20, Sec. III.B] (labeled GPSR) with the convergence threshold tolP =
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10−5 and tuning parameter a in (5.1b) chosen manually to achieve good reconstruction

performance;

• the double overrelaxation (DORE) thresholding method in [12, Sec. III] or its approx-

imation (DOREapp) where the (HHT )−1 term is approximated by a diagonal matrix,

initialized by the zero sparse signal estimate:

s(0) = 0p×1; (5.2)

• the normalized iterative hard thresholding (NIHT) scheme [21] initialized by the zero s(0)

in (5.2);

• the model-based iterative hard thresholding (MB-IHT) algorithmn [5] using a greedy tree

approximation [22], initialized by the zero s(0) in (5.2).

For the MP-EM, DORE, NIHT, and MB-IHT iterations, we use the following convergence

criterion:

∥s(j+1) − s(j)∥22
p

< δ (5.3)

where δ > 0 is the convergence threshold selected in the following examples so that the perfor-

mances of the above methods do not change significantly by further decreasing δ.

The sensing matrix H has the following structure:

H =
1

ρΦ
ΦΨ (5.4)

where Φ is the N×p sampling matrix and Ψ is the p×p orthogonal sparsifying transform matrix

(satisfying ΨΨT = Ip). Note that H in (5.4) satisfies (2.2). In the following examples, the

sensing matrices Φ are either random Gaussian (Sections 5.1 and 5.2) or structurally random

[23] (Section 5.3) and the sparsifying transform matrices Ψ are either identity (Section 5.1) or

inverse Haar wavelet transform matrices (Sections 5.2 and 5.3). We set the tree depth L = 4.

5.1 Small-scale Structured Sparse Signal Reconstruction

We generated the binary state variables q of length p = 1024 using the Markov tree model

in Chapter 2 with PL = 10−5. Conditional on qi, si are generated according to (2.4b). Here,
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the matrix-to-vector conversion operator υ(·) corresponds to simple columnwise conversion.

The entries of the sampling matrix Φ in (5.4) are independent, identically distributed (i.i.d.)

standard Gaussian random variables and the transform matrix Ψ in (5.4) is identity: Ψ = Ip.

We vary the values of γ2, ϵ2, σ2, PH, and Proot to test the performances of various methods

under different conditions. Our performance metric is the average mean-square error (MSE)

of an estimate s̃ of the signal coefficient vector:

MSE{s̃} =
EΦ,s,y[∥s̃ − s∥22]

p
(5.5)

computed using 500 Monte Carlo trials, where averaging is performed over the random Gaussian

sampling matrices Φ, signal s, and measurements y. The expected number of large-magnitude

signal coefficients is

E
[ p∑

i=1

qi

]
=

p

4L

(
1 + 3

L−1∑
l=0

4l Pl

)
(5.6a)

where Pl is the marginal probability that a state variable in the lth tree level is equal to one,

computed recursively as follows:

Pl = Pl−1PH + (1− Pl−1)PL (5.6b)

initialized by P0 = Proot.

NIHT, DORE, and MB-IHT require knowledge of the signal sparsity level r; in this example,

we set r for these methods to the true signal support size. For σ2 = 1, we select the convergence

threshold in (5.3) to δ = 10−4 and for σ2 = 10−6, we select this convergence threshold to δ =

10−10. For GPSR and FPCAS, we vary a within the set {−1, −2, −3, −4, −5, −6, −7, −8, −9}

and, for each N/p and each of the two methods, we use the optimal a that achieves the smallest

MSE. For MP-EM, we set the grid length K = 16.

Recall that the turbo-AMP approach needs normalized columns of the sensing matrix,

see [6, eq. (22)]. When applying the turbo-AMP method, we scale the sensing matrix as

Hscale = (1/
√
N) ΦΨ so that it has approximately normalized columns. With measurements

y and scaled sensing matrix Hscale, turbo-AMP returns the scaled signal estimate sscale, and

we compute the final turbo-AMP signal estimate as (ρΦ/
√
N) sscale, whose performance is

evaluated using (5.5).
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Figs. 5.1 and 5.2 show the MSEs of different methods for several choices of γ2, ϵ2, and

σ2 where we fix PH = Proot = 0.5 (corresponding to E [
∑p

i=1 qi]/p = 0.0918) and consider

σ2 ∈ {1, 10−6}, ϵ2 ∈ {0.1, 10}, and γ2 ∈ {103, 105}. Here, a larger value of the low-signal

relative variance ϵ2 implies that the signal coefficient vector s is less (approximately) sparse

and a larger value of the high-signal relative variance γ2 implies a relatively higher signal-to-

noise (SNR). Observe that the noise variance σ2 = 10−6 corresponds to the noise precision

1/σ2 = 106, which is the mean of the prior pdf for 1/σ2 used in [6, Sec. IV, p. 3444].

In Fig. 5.1, we show the MSEs of various methods as functions of the subsampling factor

N/p for more sparse signals (ϵ2 = 0.1), relatively lower SNR (γ2 = 103), and variable noise

variance σ2 ∈ {1, 10−6}. Observe that turbo-AMP is sensitive to the choice of the noise variance

σ2: It has the largest MSE for σ2 = 1 and N/p < 0.4, but becomes the second best method for

σ2 = 10−6 and most N/p. In contrast, MP-EM keeps the best reconstruction performance as

σ2 varies: The MSE of MP-EM is up to 4.6 times smaller than its closest competitor for both

σ2 = 1 and σ2 = 10−6.

The MSEs of most methods are roughly 106 times smaller in Fig. 5.1(b) where σ2 = 10−6

than the corresponding MSEs in Fig. 5.1(a) where σ2 = 1. However, this is not true for

turbo-AMP, which is very sensitive to the selection of its prior pdf for the noise precision 1/σ2.

For the noise variance σ2 = 10−6, turbo-AMP performs significantly better than for σ2 = 1

(upon taking into account the scaling adjustment by the factor 10−6), which is facilitated by

the fact that 1/σ2 = 106 is the mean of the prior pdf for 1/σ2 used in [6, Sec. IV, p. 3444]

and in the corresponding MATLAB implementation at http://www.ece.osu.edu/~schniter/

turboAMPimaging that we employ.

The approximate invariance of MP-EM to scaling of the measurements can be explained

by the fact that the shape of the concentrated marginal posterior distribution (2.10) (which

is a function of state variables q only) does not change as we scale the measurements y by a

constant.

In Fig. 5.2, we fix σ2 = 10−6, focus on less (approximately) sparse signals with ϵ2 = 10, and

show the MSEs of various methods as functions of the subsampling factor N/p for γ2 = 105

(relatively higher SNR) and γ2 = 103 (lower SNRs). When γ2 = 105, turbo-AMP and MP-EM



www.manaraa.com

21

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

0

10
1

10
2

10
3

N / p

M
S

E

 

 

MB−IHT
DORE
FPC

AS

GPSR
NIHT
turbo−AMP
MP−EM
MP−EM

OPT

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−6

10
−5

10
−4

N / p

M
S

E

 

 

MB−IHT
DORE
FPC

AS

GPSR
NIHT
turbo−AMP
MP−EM
MP−EM

OPT

(b)

Figure 5.1 MSEs as functions of the subsampling factor N/p for PH = Proot = 0.5, γ2 = 103,

ϵ2 = 0.1 and (a) σ2 = 1 and (b) σ2 = 10−6.

clearly outperform all other methods: turbo-AMP has the smallest MSE for N/p < 0.3. The

MSE of turbo-AMP is larger than that of MP-EM when N/p ≥ 0.3. When γ2 = 103, MP-EM

outperforms all the other methods except MP-EMOPT for all the subsampling factors.

Parts (b) of Figs. 5.1 and 5.2 show the MSE performances of various methods for recon-

structing signals that are more and less (approximately) sparse, respectively, with all other

simulation parameters being the same. For each method, the more sparse signals can be re-

constructed with a smaller MSE than the less sparse signals at each subsampling factor N/p:

Compare Figs. 5.1(b) and 5.2(b).

In both Figs. 5.1 and 5.2, the MSE of MP-EM is close to that of MP-EMOPT, which implies

that the marginal-posterior based criterion in Chapter 4 selects the variance parameter well in

this example.

Both MP-EM and turbo-AMP yield generally non-sparse signal estimates, particularly when

the underlying signal s is less (approximately) sparse, i.e., ϵ2 = 10.

Fig. 5.3 shows the MSEs of different methods as functions of the normalized expected

number of large-magnitude signal coefficients E [
∑p

i=1 qi]/p (corresponding to the expected sig-

nificant coefficient ratio), obtained by varying PH = Proot, where we fix σ2 = 10−6, γ2 = 103,

N/p = 0.35 and consider ϵ2 ∈ {0.1, 10}. MP-EMOPT has the smallest MSE for all expected
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Figure 5.2 MSEs as functions of the subsampling factor N/p for PH = Proot = 0.5, σ2 = 10−6,

ϵ2 = 10 and (a) γ2 = 105 and (b) γ2 = 103.

significant coefficient ratios in Fig. 5.3. MP-EM provides a relatively poor performance com-

pared with other methods when E [
∑p

i=1 qi] is small, implying that the marginal-posterior based

criterion in Chapter 4 does not select the variance parameter σ2 well for very small expected

significant coefficient ratios and that manual tuning of σ2 is needed in this case.

For more (approximately) sparse signals with ϵ2 = 0.1 in Fig. 5.3(a), MP-EM outper-

forms all other methods except MP-EMOPT when E [
∑p

i=1 qi]/p ≥ 0.0655. For less sparse

signals with ϵ2 = 10 in Fig. 5.3(b), MP-EM becomes the closest competitor to MP-EMOPT for

E [
∑p

i=1 qi]/p ≥ 0.0473. For both more and less sparse signals, the gap between the MSEs of

MP-EM and MP-EMOPT becomes smaller as E [
∑p

i=1 qi] increases. Turbo-AMP is the second

best method when E [
∑p

i=1 qi]/p < 0.0655 and E [
∑p

i=1 qi]/p < 0.0473 for ϵ2 = 0.1 and ϵ2 = 10,

respectively. However, it achieves a relatively fair performance for larger E [
∑p

i=1 qi].

For more (approximately) sparse signals with ϵ2 = 0.1 in Fig. 5.3(a), the convex approaches

(GPSR and FPCAS) outperform the hard thresholding methods (DORE, MB-IHT, NIHT)

when E [
∑p

i=1 qi]/p ≥ 0.0655. For less sparse signals with ϵ2 = 10 in Fig. 5.3(b), the convex

approaches outperform the hard thresholding methods over the entire range of expected sig-

nificant coefficient ratios. With the exception of MP-EM and MP-EMOPT, GPSR and FPCAS

have smaller MSEs than all the other methods in Fig. 5.3(a) when E [
∑p

i=1 qi]/p ≥ 0.104.



www.manaraa.com

23

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
10

−7

10
−6

10
−5

10
−4

E [
∑p

i=1 qi]/p

M
S

E

 

 

MB−IHT
NIHT
DORE
turbo−AMP
FPC

AS

GPSR
MP−EM
MP−EM

OPT

(a)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

10
−5

10
−4

E [
∑p

i=1 qi]/p

M
S

E

 

 

MB−IHT
NIHT
DORE
turbo−AMP
FPC

AS

GPSR
MP−EM
MP−EM

OPT

(b)

Figure 5.3 MSEs as functions of the expected significant coefficient ratio E [
∑p

i=1 qi]/p for

σ2 = 10−6, γ2 = 103, N/p = 0.35 and (a) ϵ2 = 0.1 and (b) ϵ2 = 10.

MB-IHT, which employs a greedy tree approximation and deterministic tree structure,

achieves quite a poor MSE performance in Figs. 5.1–5.3. A relatively poor performance of

MB-CoSaMP (which employs the same deterministic tree structure) has also been reported

in [6, Sec. IV.B].

5.2 Image Reconstruction Using Gaussian I.I.D. Sampling Matrices

We reconstruct the 128× 128 ‘Cameraman’ image from compressive samples generated us-

ing random sampling matrices Φ with i.i.d. standard normal elements and the p×p orthogonal

inverse Haar wavelet transform matrix Ψ. Here, the matrix-to-vector conversion operator υ(·)

is based on the MATLAB wavelet decomposition function wavedec2 with Haar wavelet, which

has also been used in [4] and [6]. Our performance metric is the average MSE of a signal

coefficient vector estimate s̃:

MSE{s̃} =
EΦ[∥s̃ − s∥22]

p
(5.7)

computed using 10 Monte Carlo trials, where averaging is performed over the random Gaussian

sampling matrices Φ.

Here, we employ DOREapp that approximates the (HHT )−1 = ρ2Φ (ΦΦT )−1 term by
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(ρ2Φ/p) IN , which is justified by the fact that EΦ[ΦΦ
T ] = p IN holds in this example, see

also (5.4). For DOREapp, we apply the following empirical Bayesian estimate of random signal

vector z [12, eq. (16)]:

z(+∞) = s(+∞) +HT (HHT )−1(y −Hs(+∞)) (5.8)

where s(+∞) denotes the sparse signal estimates obtained upon convergence of DOREapp iter-

ation and the (HHT )−1 term is approximated by (ρ2Φ/p) IN . We set the sparsity level r for

NIHT and DOREapp as 2000N/p and 2500N/p for MB-IHT, tuned for good MSE performance.

The convergence threshold in (5.3) is set to δ = 10−5. The tuning parameters for MP-EM are

chosen as

γ2 = 1000, ϵ2 = 0.1, Proot = PH = 0.2, PL = 10−5. (5.9)

For GPSR and FPCAS, we tuned the regularization parameter τ manually by varying a

with the set {−1, −2, −3, −4, −5, −6, −7, −8, −9} : the best reconstruction performances

are achieved for a = −3. When applying the turbo-AMP method, we scale the sensing matrix

as Hscale = (1/
√
N)ΦΨ and apply the same scaling correction as in the example in Section 5.1.

Fig. 5.4 shows the MSE performances of different algorithms as functions of the normalized

number of measurements (subsampling factor) N/p. MP-EM achieves the best MSE when

N/p ≤ 0.35. The MSEs of GPSR and FPCAS are close to each other and smaller than those of

DOREapp, NIHT, and MB-IHT for all N/p and the MSE of MP-EM is 1.4 to 2.4 times smaller

than that of GPSR and FPCAS, see Fig. 5.4.

MB-IHT has the largest MSE for most N/p, which is likely due to the fact that it employs

the deterministic tree structure, as discussed earlier.

For N/p ≤ 0.35, turbo-AMP performs similarly to DOREapp, NIHT, and MB-IHT, but it

outperforms all other methods for N/p > 0.35. The reasons why turbo-AMP performs well for

large N/p, outperforming all competitors, are likely the followings:

• it uses a more general prior on the binary state variables than our MP-EM method,

which allows the tree probability parameters PH, PL, γ
2, and ϵ2 to vary between the

signal decomposition levels, and
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Figure 5.4 MSEs as functions of the subsampling factor N/p.

• learns the tree probability parameters parameters from the measurements.

In contrast, our MP-EM method employs the crude choices of the tree and other tuning pa-

rameters in (5.9).

5.3 Large-scale Image Reconstruction Using a Structurally Random

Sampling Matrix

We now reconstruct the standard 256 × 256 ‘Lena’ and ‘Cameraman’ images. As in Sec-

tion 5.2, the matrix-to-vector conversion operator υ(·) is based on the MATLAB wavelet de-

composition function wavedec2 with Haar wavelet. The sampling matrix Φ is generated from

structurally random compressive samples [23] and the transform matrix Ψ in (5.4) is the p× p

orthogonal inverse Haar wavelet transform matrix, which implies that the sensing matrix H

has orthonormal rows: HHT = IN and, consequently, ρΦ = ρH = 1. Our performance metric

is the peak signal-to-noise ratio (PSNR) of an estimated signal s̃:

PSNR (dB) = 10 log10

{ [(Ψs)MAX − (Ψs)MIN]
2

∥s̃− s∥22/p

}
. (5.10)

Here, we employ the exact DORE and the exact random signal estimate in (5.8), which

are computationally tractable because H has orthonormal rows. We set the sparsity level r for

NIHT and DORE as 10000N/p and 15000N/p for MB-IHT, tuned for good PSNR performance.
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Figure 5.5 (a) PSNRs and (b) CPU times as functions of the subsampling factor N/p for the

256× 256 ‘Lena’ image.

The convergence threshold in (5.3) is set to δ = 0.1. The tuning parameters for MP-EM are

given in (5.9) and the grid length in MP-EM is set as K = 12, the same as in Section 5.2.

We tuned the regularization parameters τ in (5.1b) for FPCAS and GPSR manually and found

that the best performance is achieved when a = −3 for both algorithms.

When applying the turbo-AMPmethod, we scale the sensing matrix asHscale = (
√
p/N) ΦΨ.

With measurements y and scaled sensing matrix Hscale, turbo-AMP returns the scaled signal

estimate sscale, and we compute the final turbo-AMP signal estimate as (
√
p/N) sscale, whose

performance is evaluated using (5.10). Our empirical experience shows that scaling the sensing

matrix improves the reconstruction performance of the turbo-AMP algorithm in this example.

Fig. 5.5 shows the PSNRs and CPU times achieved by various methods when reconstructing

the 256×256 ‘Lena’ image. For N/p < 0.4, the proposed MP-EM method outperforms all other

methods, where the performance improvement compared with the closest competitor varies

between 2.4 dB and 2.6 dB. For N/p ≥ 0.4, turbo-AMP outperforms all other methods. In

terms of CPU time, DORE and NIHT are the fastest among all the methods compared. It takes

around 7 seconds as the runtime for turbo-AMP at each measurement point. MP-EM is 1.5 to

2.3 times slower than turbo-AMP, but obviously faster than GPSR, FPCAS, and MB-IHT.1

1Regarding the reported CPU time, note that the turbo-AMP code does not use MATLAB only, but combines
MATLAB and JAVA codes.
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Figure 5.6 (a) PSNRs and (b) CPU times as functions of the subsampling factor N/p for the

256× 256 ‘Cameraman’ image.

Fig. 5.6 shows the PSNRs and CPU times achieved by various methods when reconstructing

the 256× 256 ‘Cameraman’ image. For N/p < 0.4, the proposed MP-EM method outperforms

all other methods by at least 2.6 dB. For N/p ≥ 0.4, turbo-AMP outperforms all other methods,

but performs quite poorly for N/p < 0.35: a similar pattern that occurs also in Fig. 5.5.

According to Fig. 5.6(b), both DORE and NIHT consume less than 4 s in terms of CPU time.

It takes around 7 s for turbo-AMP at every measurement point. MP-EM is still consistently

faster than GPSR, FPCAS, and MB-IHT, and requires 4.0 to 10.8 s more than turbo-AMP.

In Figs. 5.5 and 5.6, MB-IHT achieves a fair performance and consumes the longest CPU

time.

Figs. 5.7 and 5.8 show the reconstructed 256 × 256 ‘Lena’ and ‘Cameraman’ images by

different methods for N/p = 0.375, respectively: The MP-EM algorithm achieves better recon-

structed image quality compared with the other methods.
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(a) True Image (b) MP-EM (PSNR = 28.40 dB)

(c) turbo-AMP (PSNR = 24.85 dB) (d) MB-IHT (PSNR = 25.36 dB)

(e) GPSR (PSNR = 26.01 dB) (f) FPCAS (PSNR = 25.86 dB)

(g) NIHT (PSNR = 24.98 dB) (h) DORE (PSNR = 25.36 dB)

Figure 5.7 The ‘Lena’ image reconstructed by various methods for N/p = 0.375.
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(a) True Image (b) MP-EM (PSNR = 30.53 dB)

(c) turbo-AMP (PSNR = 27.95 dB) (d) MB-IHT (PSNR = 26.68 dB)

(e) GPSR (PSNR = 27.53 dB) (f) FPCAS (PSNR = 27.50 dB)

(g) NIHT (PSNR = 26.57 dB) (h) DORE (PSNR = 26.82 dB)

Figure 5.8 The ‘Cameraman’ image reconstructed by various methods for N/p = 0.375.
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CHAPTER 6. Concluding Remarks

We presented a Bayesian EM algorithm for reconstructing approximately sparse signal

from compressive samples using a Markov tree prior for the signal coefficients. We employed

the max-product belief propagation algorithm to implement the M step of the proposed EM

iteration. Compared with the existing message passing algorithms in the compressive sampling

area, our method does not approximate the message form. The simulation results show that

our algorithm often outperforms existing algorithms for simulated signals and standard test

images with different sampling operators.

Our future work will include the convergence analysis of the MP-EM algorithm, incorpo-

rating other measurement models, using a more general prior on the binary state variables, and

designing schemes for learning the tree parameters from the measurements.
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APPENDIX A. Derivation of the EM Algorithm and Proofs of Its

Monotonicity and (3.5)

Consider the hierarchical two-stage model in (3.1). The complete-data posterior distribution

for known σ2 is

pθ,z|σ2,y(θ, z|σ2,y) ∝ py|z,σ2(y|z, σ2) pz|s(z|s) ps|q,σ2(s|q, σ2) pq(q) (σ2)−1

∝
exp{−1

2(y −Hz)T [C(σ2)]−1(y −Hz)}√
det[C(σ2)]

(ϵ2/γ2)0.5
∑p

i=1 qi pq(q)

· exp[−0.5 ∥z − s∥22/σ2 − 0.5 sT D−1(q) s/σ2] (A1a)

where

C(σ2) = σ2(IN −HHT ) (A1b)

and

pz|σ2,y,θ(z|σ2,y,θ) = pz|σ2,y,s(z|σ2,y, s) = N (z|E z|σ2,y,s(z|σ2,y, s), covz|σ2,y,s(z|σ2,y, s))

(A1c)

where

E z|σ2,y,s(z|σ2,y, s) = {HT [C(σ2)]−1H + Ip/σ
2}−1{HT [C(σ2)]−1y + s/σ2} (A1d)

covz|σ2,y,s(z|σ2,y, s) = {HT [C(σ2)]−1H + Ip/σ
2}−1 (A1e)

By using the matrix inversion lemma [24, eq. (2.22), p. 424]:

(R+ STU)−1 = R−1 −R−1S(T−1 + UR−1S)−1UR−1 (A2a)

and the following identity [24, p. 425]:

(R+ STU)−1ST = R−1S(T−1 + UR−1S)−1 (A2b)
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we obtain

E z|σ2,y,s(z|σ2,y, s) = s+HT (y −Hs) (A3)

which leads to (3.2).

The objective function ln pθ |σ2,y(θ |σ2,y) that we aim to maximize in Chapter 3 satisfies

the following property in the EM iteration:

ln pθ |σ2,y(θ |σ2,y) = Q(θ|θ(j))−H(θ|θ(j)) (A4a)

where

Q(θ|θ(j)) , E z|σ2,y,θ

[
ln pθ,z|σ2,y(θ, z|σ2,y)|σ2,y,θ(j)

]
(A4b)

H(θ|θ(j)) , E z|σ2,y,θ

[
ln pz|σ2,y,θ(z|σ2,y,θ)|σ2,y,θ(j)

]
(A4c)

From (A1a) and (A3), Q(θ|θ(j)) could be computed as

Q(θ|θ(j)) = const− 0.5
∥z(j) − s∥22 + sT D−1(q) s

σ2
+ ln[pq(q)] + 0.5 ln

( ϵ2
γ2
) p∑

i=1

qi (A5)

where const denotes the terms that are not functions of θ and (3.3a) follows. Since Q(θ|θ(j)) is

maximized at θ(j+1), we have Q(θ(j+1)|θ(j)) ≥ Q(θ(j)|θ(j)). (3.4) follows from (A4a) by using

the inequality for Q(θ|θ(j)) and H(θ(j+1)|θ(j)) ≤ H(θ(j)|θ(j)), which is a consequence of the

fact that H(θ|θ(j)) is maximized with respect to θ at θ = θ(j).

Proof of Theorem 1. For a given q, (A5) is a quadratic function of s that is easy to maximize

with respect to s:

argmax
s

Q(θ|θ(j)) =
[
D−1(q) + Ip

]−1
z(j). (A6)

Therefore, the estimates of s and q obtained upon convergence of the EM iteration in Chapter 3

to its fixed point satisfy:

s(+∞) =
[
D−1(q(+∞)) + Ip

]−1
z(+∞)

=
[
D−1(q(+∞)) + Ip

]−1 [
s(+∞) +HT (y −H s(+∞))

]
(A7)

where the second equality follows by using (3.2). Solving (A7) for s(+∞) yields

s(+∞) =
[
D−1(q(+∞)) +HTH

]−1
HTy (A8)

and (3.5) follows.
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APPENDIX B. Derivation of the Messages and Beliefs in Section 3.1

Before we proceed, note the following useful identities:

argmax
si

N (zi ; si, σ
2)N (si ; 0, τ

2) =
τ2 zi

σ2 + τ2
(B1a)

max
si

N (zi ; si, σ
2)N (si ; 0, τ

2) =
1√

2πσ2
√
2π τ2

exp
(
− 0.5

z2i
σ2 + τ2

)
. (B1b)

B.1 Upward Messages

B.1.1 Upward Messages from Leaf Nodes

When passing upward messages from the leaf nodes i ∈ Tleaf , we set the multiplicative term∏
k∈ch(i)mk→i(qi) to one, yielding [see (3.12)]

mi→π(i)(qπ(i)) = α max
θi

{ψi(θi)ψi,π(i)(qi, qπ(i))}

= α max
θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ϵ

2σ2)]1−qi

·[P qi
H (1− PH)

1−qi ]qπ(i) [P qi
L (1− PL)

1−qi ]1−qπ(i)
}
. (B2)

For qπ(i) = 0, we have

µui (0) = mi→π(i)(0)

= α max
θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ϵ

2σ2)]1−qi P qi
L (1− PL)

1−qi
}

= α1 max
{
(1− PL) exp

(
− 0.5

z2i
σ2 + σ2ϵ2

)
/ϵ, PL exp

(
− 0.5

z2i
σ2 + σ2γ2

)
/γ
}

(B3a)

and, for qπ(i) = 1, we have

µui (1) = mi→π(i)(1)

= α max
θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ϵ

2σ2)]1−qi P qi
H (1− PH)

1−qi
}

= α1 max
{
(1− PH) exp

(
− 0.5

z2i
σ2 + σ2ϵ2

)
/ϵ, PH exp

(
− 0.5

z2i
σ2 + σ2γ2

)
/γ
}
(B3b)
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where we have used (B1b) with τ2 = σ2ϵ2 and τ2 = σ2γ2 and α > 0 and α1 > 0 are appro-

priate normalizing constants. It follows from (B1a) that the only two candidates for θi in the

maximization of (B2) are [0, ŝi(0)]
T and [1, ŝi(1)]

T .

In summary,

mi→π(i)(qπ(i)) = [µui (0)]
1−qπ(i) [µui (1)]

qπ(i) (B4a)

and (B3a) and (B3b) can be rewritten as

µui (0) = max{νu
0,i}/(max{νu

0,i}+max{νu
1,i}) (B4b)

µui (1) = max{νu
1,i}/(max{νu

0,i}+max{νu
1,i}) (B4c)

and νu
0,i,ν

u
1,i, and ϕ(z) were defined in (3.13c), (3.13d), and (3.13f).

B.1.2 Upward Messages from Non-Leaf Nodes

For i ∈ T \Tleaf , we can use induction to simplify the multiplicative term
∏

k∈ch(i)mk→i(qi)

in (3.12) as follows: ∏
k∈ch(i)

mk→i(qi) = [
∏

k∈ch(i)

µuk(0)]
1−qi [

∏
k∈ch(i)

µuk(1)]
qi (B5)

see also Fig. 3.2(a).

Substituting (B5) into (3.12) yields

mi→π(i)(qπ(i)) = α max
θi

{
ψi(θi)ψi,π(i)(qi, qπ(i))

∏
k∈ch(i)

mk→i(qi)
}

= α max
θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ϵ

2σ2)]1−qi

·[P qi
H (1− PH)

1−qi ]qπ(i) [P qi
L (1− PL)

1−qi ]1−qπ(i) [
∏

k∈ch(i)

µuk(0)]
1−qi [

∏
k∈ch(i)

µuk(1)]
qi
}
. (B6)

For qπ(i) = 0, we have

mi→π(i)(0) = α max
θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ϵ

2σ2)]1−qi P qi
L (1− PL)

1−qi

·[
∏

k∈ch(i)

µuk(0)]
1−qi [

∏
k∈ch(i)

µuk(1)]
qi
}

= α1 max
{
(1− PL) [

∏
k∈ch(i)

µuk(0)] exp
(
− 0.5

z2i
σ2 + σ2ϵ2

)
/ϵ,

PL [
∏

k∈ch(i)

µuk(1)] exp
(
− 0.5

z2i
σ2 + σ2γ2

)
/γ
}

(B7a)
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and, for qπ(i) = 1, we have

mi→π(i)(1) = α max
θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ϵ

2σ2)]1−qi P qi
H (1− PH)

1−qi

·[
∏

k∈ch(i)

µuk(0)]
1−qi [

∏
k∈ch(i)

µuk(1)]
qi
}

= α1 max
{
(1− PH) [

∏
k∈ch(i)

µuk(0)] exp
(
− 0.5

z2i
σ2 + σ2ϵ2

)
/ϵ,

PH [
∏

k∈ch(i)

µuk(1)] exp
(
− 0.5

z2i
σ2 + σ2γ2

)
/γ
}

(B7b)

where we have used (B1b) with τ2 = σ2ϵ2 and τ2 = σ2γ2 and α > 0 and α1 > 0 are appropriate

normalizing constants.

In summary,

mi→π(i)(qπ(i)) = [µui (0)]
1−qπ(i) [µui (1)]

qπ(i) (B8a)

where

µui (0) = max{νu
0,i ⊙ ηu

i }/(max{νu
0,i ⊙ ηu

i }+max{νu
1,i ⊙ ηu

i }) (B8b)

µui (1) = max{νu
1,i ⊙ ηu

i }/(max{νu
0,i ⊙ ηu

i }+max{νu
1,i ⊙ ηu

i }) (B8c)

and

ηu
i =

⊙
k∈ch(i)

µu
k. (B8d)

The general upward message form in (3.13) follows by combining (B4) and (B8).

B.2 Downward Messages

Based on the results in Section 3.1.1 and Appendix B.1, we simplify the product of upward

messages sent from the siblings of node i in (3.14) as follows [see (3.13a)]:

∏
k∈sib(i)

mk→π(i)(qπ(i)) = [
∏

k∈sib(i)

µuk(0)]
1−qπ(i) [

∏
k∈sib(i)

µuk(1)]
qπ(i) (B9)

see also Fig. 3.2(b).
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B.2.1 Downward Messages from Root Nodes

For the node π(i) ∈ Troot, we set the message mgp(i)→π(i)(qπ(i)) to one, yielding [see (3.14)]

mπ(i)→i(qi) = αmax
θπ(i)

{
ψπ(i)(θπ(i))ψi,π(i)(qi, qπ(i))

∏
k∈sib(i)

mk→π(i)(qπ(i))
}
. (B10)

Substituting (B9) into (B10) yields

mπ(i)→i(qi) = αmax
θπ(i)

{
ψπ(i)(θπ(i))ψi,π(i)(qi, qπ(i))

∏
k∈sib(i)

mk→π(i)(qπ(i))
}

= α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [ProotN (sπ(i) ; 0, γ
2σ2)]qπ(i) [(1− Proot)N (sπ(i) ; 0, ϵ

2σ2)]1−qπ(i)

·[P qi
H (1− PH)

1−qi ]qπ(i) [P qi
L (1− PL)

1−qi ]1−qπ(i) [
∏

k∈sib(i)

µuk(0)]
1−qπ(i) [

∏
k∈sib(i)

µuk(1)]
qπ(i)

}
. (B11)

For qi = 0, we have

mπ(i)→i(0) = α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [N (sπ(i) ; 0, γ
2σ2)]qπ(i) [N (sπ(i) ; 0, ϵ

2σ2)]1−qπ(i)

·{(1− Proot)(1− PL)[
∏

k∈sib(i)

µuk(0)]}1−qπ(i) {Proot(1− PH)[
∏

k∈sib(i)

µuk(1)]}qπ(i)

}

= α1max
{
(1− Proot)(1− PL)[

∏
k∈sib(i)

µuk(0)] exp
(
− 0.5

z2π(i)

σ2 + σ2ϵ2

)
/ϵ,

Proot(1− PH)[
∏

k∈sib(i)

µuk(1)] exp
(
− 0.5

z2π(i)

σ2 + σ2γ2

)
/γ
}

(B12a)

and for qi = 1, we have

mπ(i)→i(1) = α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [N (sπ(i) ; 0, γ
2σ2)]qπ(i) [N (sπ(i) ; 0, ϵ

2σ2)]1−qπ(i)

·{(1− Proot)PL [
∏

k∈sib(i)

µuk(0)]}1−qπ(i) {Proot PH [
∏

k∈sib(i)

µuk(1)]}qπ(i)

}

= α1max
{
(1− Proot)PL [

∏
k∈sib(i)

µuk(0)] exp
(
− 0.5

z2π(i)

σ2 + σ2ϵ2

)
/ϵ,

Proot PH [
∏

k∈sib(i)

µuk(1)] exp
(
− 0.5

z2π(i)

σ2 + σ2γ2

)
/γ
}

(B12b)

where we have used (B1b) with τ2 = σ2ϵ2 and τ2 = σ2γ2 and α > 0 and α1 > 0 are appropri-

ate normalizing constants. The only two candidates to maximize (B10) are [0, ŝπ(i)(0)]
T and

[1, ŝπ(i)(1)]
T .
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In summary,

mπ(i)→i(qi) = [µdi (0)]
1−qi [µdi (1)]

qi (B13a)

where

µdi (0) = max{νd
0,i ⊙ ηd

i }/(max{νd
0,i ⊙ ηd

i }+max{νd
1,i ⊙ ηd

i }) (B13b)

µdi (1) = max{νd
1,i ⊙ ηd

i }/(max{νd
0,i ⊙ ηd

i }+max{νd
1,i ⊙ ηd

i }) (B13c)

and

νd
0,i =

[
1− PL, 1− PH

]T ⊙ ϕ(zπ(i))⊙
[ ⊙
k∈sib(i)

µu
k

]
(B13d)

νd
1,i =

[
PL, PH

]T ⊙ ϕ(zπ(i))⊙
[ ⊙
k∈sib(i)

µu
k

]
(B13e)

ηd
i =

[
1− Proot, Proot

]T
. (B13f)

B.2.2 Downward Messages from Non-Root Nodes

For the node π(i) ∈ (T \Troot)\Tleaf , using the same strategy as above, (3.14) simplifies as

mπ(i)→i(qi) = αmax
θπ(i)

{
ψπ(i)(θπ(i))ψi,π(i)(qi, qπ(i))mgp(i)→π(i)(qπ(i))

∏
k∈sib(i)

mk→π(i)(qπ(i))
}

= α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [N (sπ(i) ; 0, γ
2σ2)]qπ(i) [N (sπ(i) ; 0, ϵ

2σ2)]1−qπ(i)

·[P qi
H (1− PH)

1−qi ]qπ(i) [P qi
L (1− PL)

1−qi ]1−qπ(i) [
∏

k∈sib(i)

µuk(0)]
1−qπ(i)

·[
∏

k∈sib(i)

µuk(1)]
qπ(i) [µdπ(i)(0)]

1−qπ(i) [µdπ(i)(1)]
qπ(i)

}
(B14)

For qi = 0, we have

mπ(i)→i(0) = α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [N (sπ(i) ; 0, γ
2σ2)]qπ(i) [N (sπ(i) ; 0, ϵ

2σ2)]1−qπ(i)

·{µdπ(i)(0) (1− PL)[
∏

k∈sib(i)

µuk(0)]}1−qπ(i) {µdπ(i)(1) (1− PH)[
∏

k∈sib(i)

µuk(1)]}qπ(i)

}

= α1max
{
µdπ(i)(0) (1− PL)[

∏
k∈sib(i)

µuk(0)] exp
(
− 0.5

z2π(i)

σ2 + σ2ϵ2

)
/ϵ,

µdπ(i)(1) (1− PH)[
∏

k∈sib(i)

µuk(1)] exp
(
− 0.5

z2π(i)

σ2 + σ2γ2

)
/γ
}

(B15a)
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and for qi = 1, we have

mπ(i)→i(1) = α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [N (sπ(i) ; 0, γ
2σ2)]qπ(i) [N (sπ(i) ; 0, ϵ

2σ2)]1−qπ(i)

·{µdπ(i)(0)PL [
∏

k∈sib(i)

µuk(0)]}1−qπ(i) {µdπ(i)(1)PH [
∏

k∈sib(i)

µuk(1)]}qπ(i)

}

= α1max
{
µdπ(i)(0)PL [

∏
k∈sib(i)

µuk(0)] exp
(
− 0.5

z2π(i)

σ2 + σ2ϵ2

)
/ϵ,

µdπ(i)(1)PH [
∏

k∈sib(i)

µuk(1)] exp
(
− 0.5

z2π(i)

σ2 + σ2γ2

)
/γ
}

(B15b)

where we have used (B1b) with τ2 = σ2ϵ2 and τ2 = σ2γ2 and α > 0 and α1 > 0 are appropri-

ate normalizing constants. The only two candidates to maximize (B14) are [0, ŝπ(i)(0)]
T and

[1, ŝπ(i)(1)]
T .

In summary,

mπ(i)→i(qi) = [µdi (0)]
1−qi [µdi (1)]

qi (B16a)

where

µdi (0) = max{νd
0,i ⊙ ηd

i }/(max{νd
0,i ⊙ ηd

i }+max{νd
1,i ⊙ ηd

i }) (B16b)

µdi (1) = max{νd
1,i ⊙ ηd

i }/(max{νd
0,i ⊙ ηd

i }+max{νd
1,i ⊙ ηd

i }) (B16c)

and

ηd
i = µd

π(i) (B16d)

The general downward message form in (3.15) follows by combining (B13) and (B16).

B.3 Beliefs

Define the vector βi = [βi(0), βi(1)]
T as

βi(0) = max
si

b([0, si]
T ), βi(1) = max

si
b([1, si]

T ) (B17)

where b(θi) are the beliefs defined in (3.16).
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B.3.1 Beliefs for the Root Nodes

For root nodes i ∈ Troot, the beliefs b(θi) in (3.16) become

b(θi) = αN (zi ; si, σ
2) [ProotN (si ; 0, γ

2σ2)]qi [(1− Proot)N (si ; 0, ϵ
2σ2)]1−qi

·
[ ∏
k∈ch(i)

µuk(0)
]1−qi [ ∏

k∈ch(i)

µuk(1)
]qi . (B18)

and (B17) simplify to

βi(0) = α
1√

2πσ2
√
2π ϵ2σ2

exp
(
− 0.5

z2i
σ2 + σ2ϵ2

)
(1− Proot)

∏
k∈ch(i)

µuk(0) (B19a)

βi(1) = α
1√

2πσ2
√
2π γ2σ2

exp
(
− 0.5

z2i
σ2 + σ2γ2

)
Proot

∏
k∈ch(i)

µuk(1) (B19b)

yielding

βi = [βi(0), βi(1)]
T = α1[1− Proot, Proot]

T ⊙ ϕ(zi)⊙ ηu
i . (B20)

B.3.2 Beliefs for the Non-Root Non-Leaf Nodes

For i ∈ (T \ Troot) \ Tleaf , the beliefs b(θi) in (3.16) become

b(θi) = αN (zi ; si, σ
2) [N (si ; 0, γ

2σ2)]qi [N (si ; 0, ϵ
2σ2)]1−qi [µdi (0)]

1−qi [µdi (1)]
qi

·
[ ∏
k∈ch(i)

µuk(0)
]1−qi [ ∏

k∈ch(i)

µuk(1)
]qi (B21)

and (B17) simplify to

βi(0) = α
1√

2πσ2
√
2π ϵ2σ2

exp
(
− 0.5

z2i
σ2 + σ2ϵ2

)
µdi (0)

∏
k∈ch(i)

µuk(0) (B22a)

βi(1) = α
1√

2πσ2
√

2π γ2σ2
exp

(
− 0.5

z2i
σ2 + σ2γ2

)
µdi (1)

∏
k∈ch(i)

µuk(1) (B22b)

yielding

βi = [βi(0), βi(1)]
T = α1ϕ(zi)⊙ µd

i ⊙ ηu
i . (B23)

B.3.3 Beliefs for the Leaf Nodes

For i ∈ Tleaf , the beliefs b(θi) in (3.16) become

b(θi) = αN (zi ; si, σ
2) [N (si ; 0, γ

2σ2)]qi [N (si ; 0, ϵ
2σ2)]1−qi [µdi (0)]

1−qi [µdi (1)]
qi

(B24)



www.manaraa.com

40

and (B17) simplify to

βi(0) = α
1√

2πσ2
√
2π ϵ2σ2

exp
(
− 0.5

z2i
σ2 + σ2ϵ2

)
µdi (0) (B25a)

βi(1) = α
1√

2πσ2
√

2π γ2σ2
exp

(
− 0.5

z2i
σ2 + σ2γ2

)
µdi (1) (B25b)

yielding

βi = [βi(0), βi(1)]
T = α1ϕ(zi)⊙ µd

i . (B26)

In summary,

βi = [βi(0), βi(1)]
T =

 α1[1− Proot, Proot]
T ⊙ ϕ(zi)⊙ ηu

i , i ∈ Troot

α1ϕ(zi)⊙ µd
i ⊙ ηu

i , i ∈ T \ Troot
.

Consequently, the mode θ̂i is computed as

θ̂i = (q̂i, ŝi(q̂i)) = argmax
θi

b(θi) =

 (1, ŝi(1)), βi(1) ≥ βi(0)

(0, ŝi(0)), otherwise
. (B27)

Note that the normalizing constants α and α1 in the above upward and downward messages

and beliefs have been set so that mi→π(i)(0) + mi→π(i)(1) = 1, mπ(i)→i(0) + mπ(i)→i(1) = 1,

and βi(0) + βi(1) = 1 respectively.
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